

Grundpraktikum A1 Äußerer Photoeffekt

Julien Kluge

27. Oktober 2015

Student: Julien Kluge

Betreuer: Dr. Joachim Puls

Raum: 213

Messplatz: 2

uns wurde damals erlaubt die Auswertung anders (deutlich ungenauer aber schneller) zu machen. Deswegen seht ihr keine Schnittpunktbestimmung sondern die Annäherung U_gmax=U_0 welche zwar wirklich schlimm ist aber trotzdem keine

schlechten Ergebnisse erzeugt.

(Er wollte einfach nur das wir schnell fertig werden denke ich)

Inhaltsverzeichnis

1	Abstract	1
2	Versuchsdurchführung	2
3	Mess/-Fehlerwerte und Auswertung3.1Kennlinie bei $\lambda = 436$ nm3.2Bestimmung von h, W_A und f_0	2 2 2
4	Fehleranalyse und Ergebniseinschätzung	3
5	Anlagen5.1Abbildungen5.2Aufgenommene Messwerte	4 4 7
6	Quellen	8

1 Abstract

Licht welches auf einen metallischen Leiter trifft, regt die Valenzelektronen des Metalls mit einer, der Frequenz f des Lichtes proportionalen, Energiemenge $E_{phot} = h \cdot f$ an. Übersteigt diese Energie die materialspezifische Austrittsarbeit W_A des Metalls, so werden die Elektronen aus dem Metall geschleudert. Mithilfe eines Elektrischen Feldes, kann dieser Photostrom aufgehalten oder sogar verstärkt werden (Saugspannung). Aus diesem, zu erst genannten, Zusammenhang ließen sich aus dem Experiment folgende Werte bestimmen:

- Plank'sche Wirkungsquantum: $h \approx (5.76 \pm 0.13) \text{J} \cdot \text{s}$
- Austrittsarbeit: $W_A \approx (-1.89 \pm 0.08)$ J
- Grenzfrequenz: $f_0 \approx (3.27 \pm 0.04) 10^{14} \text{Hz}$ Grenzwellenlänge: $\lambda_0 \approx (916 \pm 11) \text{nm}$

2 Versuchsdurchführung

In dem Versuch wurde der Photostrom in Abhängigkeit zur (Saug-)Gegenspannung gemessen. Mithilfe dessen lassen sich die Austrittsarbeit aus der Anode, das Plank'sche Wirkungsquantum und die Grenzfrequenz bestimmen.

Durchgeführt wurde das Experiment mithilfe einer Vakuum-Photodiode. Eine Quecksilberdampflampe lieferte, mit Hilfe von Filtern, ein monochromatisches Licht stabiler Frequenz welches über einen optischen Aufbau in die Photozelle gestrahlt wurde.

3 Mess/-Fehlerwerte und Auswertung

3.1 Kennlinie bei $\lambda = 436$ nm

Wie oben erwähnt, wurde der Photostrom in Abhängigkeit der (Saug-)Gegenspannung U_g gemessen. Dies wurde zwei mal bei unterschiedlichen Intensitäten getan. Die grafische Repräsentation wird in Abb. 1 und 2 gezeigt Dabei kann der entstehende $I_{ph}(U_g)$ -Graph in 3 Abschnitte eingeteilt werden.

1. Abschnitt 1: $-15V \le U_g \le -2V$

In diesem Bereich war die Gegenspannung groß genug, die an der Kathode herausgeschlagenen Elektronen zurück zu beschleunigen. Der trotzdem extrem kleine, messbare Photostrom in der Größenordnung von circa 1nA beruht auf der Tatsache, dass die Verunreinigte Anode durch das angelegte Feld selbst Elektronen verliert die zur Kathode hin beschleunigt werden.

2. Abschnitt 2: $-2V \le U_g \le 10V$

In diesem Bereich haben einige der herausgeschlagenen Elektronen genug kinetische Energie um die Anode zu erreichen und somit einen Strom zu verursachen. In diesem Bereich spielen viele Faktoren eine Rolle, dass nicht alle Elektronen die Anode erreichen (sprunghafter Anstieg) sondern nur ein Bruchteil. Ein erheblicher Grund ist wohl die unscharfe Fermi-Kante, welche dafür sorgt, das die Elektronen mit einer leicht unterschiedlicher Austrittsarbeit aus dem Metall geschlagen werden und somit unterschiedliche Kinetische Energie haben.

3. Abschnitt 3: $10V \le U_g \le 60V$

In diesem Bereich stellt sich langsam der Sättigungsstrom ein. Bei gleichbleibender Lichtintensität, können nicht schneller Elektronen ausgelöst werden wodurch der Graph in einer Asymptote gegen seinen Sättigungsstrom konvergiert.

3.2 Bestimmung von h, W_A und f_0

Von allen Messreihen existiert eine Nullbestimmung. D.h. dass die Spannung notiert wurde, an welche kein Messbarer Photostrom vorhanden war. Für fünf dieser Messreihen wurde damit $U_{g,max}$ abgeschätzt. Die Fehler wurden Prozentual in einer Größtfehlerabschätzung mithilfe der letzten verbleibenden Reihe gemacht, welche sowohl eine Nullbestimmung hatte als auch eine Möglichkeit nach den zwei gegeben Formeln eine Regression auszuführen. Diese waren definiert mit:

$$I(U) - (a \cdot U + b) = c(|U - U_{g,max}|)^{\frac{3}{2}}$$
(1)

$$I(U) = I_{sat} \cdot \left(\exp\left(\frac{U - U_{g,max}}{\eta U_T}\right) - 1 \right)$$
(2)

Humboldt-Universität zu Berlin

In Abb. 3 und 2 ist sie mit Formel 2 dargestellt. Die Regression mit Formel 1 erzeugt die ähnlichen Werte von:

- Reihe 492nm: $U_{g,max} \approx (-1.08 \pm 0.02) V$
- Reihe 492nm gedämpft: $U_{q,max} \approx (-0.995 \pm 0.001)$ V

Die Fehler wurden mit dem Gerätefehler und den Messungenauigkeiten abgeschätzt. Multipliziert man nun die Werte für $U_{g,max}$ und setzt sie in Zusammenhang mit der Wellenlänge λ bzw. der Frequenz f nach:

$$\lambda = \frac{c}{f} \tag{3}$$

, so erhält man die Einsteingerade

$$E_{kin} = e \cdot U_{q,max} = h \cdot f + W_A \tag{4}$$

nach der eine Regression durchgeführt werden kann. Diese wurden in Abb. 5 und 6 dargestellt. Durch die Regression lassen sich mithilfe der lineare Funktion elementare Größen bestimmt werden. Das Plank'sche Wirkungsquantum bestimmt sich demnach zu circa $h \approx (5.76 \pm 0.13)$ Js.

Die Austrittsarbeit beträgt $W_A \approx (-1.18 \pm 0.05)$ eV und die Grenzfrequenz ist demnach danach $f_0 \approx (3.27 \pm 0.04) 10^{14}$ Hz (Grenzwellenlänge: $\lambda_0 \approx (916 \pm 11)$ nm).

4 Fehleranalyse und Ergebniseinschätzung

Von 6 Messreihen wurden bei fünf lediglich durch ablesen der Nullspannung $U_{g,max}$ bestimmt. Diese Annäherung ist aufgrund der unscharfen Fermi-Kante und der verunreinigten Anode allerdings sehr Fehlerträchtig. Das zeigt sich wenn man sich Abb. 5 und 6 anguckt. Der Wert, der über die viel vertrauenswürdigere Regression bestimmt wurde, liegt sehr schlecht, einmal sogar gar nicht, im Bild des Graphen. Das zeigt eindeutig, das diese vereinfachung zu starken Fehlern führt und erklärt die schlechten Werte für das plank'sche Wirkungsquantum nach Literaturwert (Quelle 2 - $h \approx (6.62606957 \pm 0.00000029)10^{-34}$ Js). (Abweichung: circa 13 %)Demnach ist auch keinen der anderen Werte zu trauen. Außerdem ergibt sich, dass dieser Systematische Fehler, der die Ergebnisse nach unten korrigiert, übergroß zu den restlichen Fehlern (Fehler der Messeinrichtung usw.) ist. Somit sind diese schwer bis gar nicht mit diesen Messwerten einzuschätzen. Eine genauere Möglichkeit diese Werte zu bestimmen wäre es, die Spannung nur in der Einstellung $-3V \leq U_g \leq +3V$ zu belassen und dort mit einem besonderen Augenmerk auf die negativen Spannungen in sehr kleinen Intervallen zu messen. Dies könnte zu einem deutlich genaueren und besseren Ergebnis führen.

Schlussendlich lässt sich sagen, dass lediglich gezeigt wurde, wie man es nicht machen sollte indem man einfach $U_{g,max}$ abließt, wenn der Photostrom I_{ph} null wird. Den dies führt zu der starken Abweichung die das Endergebnis sehr stark bestimmt hat.

5 Anlagen

5.1 Abbildungen

Abbildung 1: Charakteristische Kennlinie bei $\lambda=436nm$

Abbildung 2: Charakteristische Kennlinie bei $\lambda=436nm$ mit 68% gemilderter Intensität

Abbildung 3: Regression im signifikanten Bereich der Kennlinie bei $\lambda=492 \mathrm{nm}$

Abbildung 4: Regression im signifikanten Bereich der Kennlinie bei $\lambda=492 \mathrm{nm}$ mit 68 % geschwächter Intensität

Abbildung 5: Einsteingerade mit Regression nach Formel 4

Abbildung 6: Einsteingerade mit Regression nach Formel 4 für gedämpfte Lichtintensitäten

5.2 Aufgenommene Messwerte

13.5.75	AT Photog flat (augures Memplate Z
47	So hun Kemline -75V=U=60V Glay
G	(-75,07-70,07-5,07-3,00-7,995-7,509-0,015-0,515
I	-3,3nA -3,2nA -3,2nA -3,2nA -3,2nA -2,2nA 4,5nA 370nA
	Q03 0,503 2,995 5,01 70,00 20,01 30,08 40,0 50,0 60,1
	7.44A Z 844 7.74A 8.44A 70.24A 11.74A 12.34A 12.54A 12.54A 12.94
-	-7,298
	0A
9	36 nm Jutensitat: - 0468%
-	7,2870
0)A
U	-75,07 1-70,02-5,061-3,091-2,0051-7,4991-0,9901-0,57910,002
Ţ	- 1nA FINA FINA FINA -0,600 A 6,800 12800 53000A
	0,505 2,996 5,08 70,02 79,97 30,0540,0 50,7 60,0
	960nA 23pA 27pA 33pA 38pA 9pA 9pA 9pA 91pA
49	$2uu - 3V \le u \le 3V$
	-31/1-2500120201-2-001
+	$-\frac{1}{2} 4 -\frac{1}{2} 5 4 -\frac{1}{2} 5 4 -\frac{1}{2} 7 -\frac{1}{2} 7 4 -\frac{1}{2} 7 -\frac$
1	THAT TOPAL TOPAL TIPAT IS FOT 1994A DOWN JONA JONA
	+1517 7,386 2,503 2,368 110 10 Warter aug
	16 ShA [1860 A WHA 2 160 A What I have the
99	1Chun 68%
a	-3,100 -2,522 -20,74 -1,576 -1,039 -0,578 0,008 0,999 7,003
	TOD 2012 12 567 12 0 FOL 0000 - 20 10 1 000 - 20
	36nA 140nA 44nA 46nA 0A - 33nA -33nA -30A
	-7.09 1-6.04 1-5.07 1-4.01
	274A -2644 -264 -236A

6 Quellen

- 1. Script zum Grundpraktikum (Formeln, Versuchsbeschreibung)
- 2. CODATA Wert für das plank'sche Wirkungsquantum http://physics.nist.gov/cgi-bin/cuu/Value?h abgerufen: 18.05.15 18:30